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Rigorous Analysis of the GTEM Cell
Roberto De Leo, T. Rozzi, Fellow, IEEE, Carlo Svara, and Leonardo Zappelli

Abstract—This work deals with the modeling of the new GTEM cell,
recently in use for field measurements, which consists of a tapered

rectangular waveguide loaded with an eccentric sloping plate conductor.

We derive the fields of the cross section of the uniform structure by
transverse resonance diffraction and apply the “local modes” approach
to the study of the longitudinal field distribution. The first few modes of
the cell are obtained. Numerical results agree with those in the litera-

ture, where available. The treatment is highly accurate and requires no
more computer power than that of a desktop computer.

I. INTRODUCTION

T HE TEM cell is a fundamental tool in electromagnetic
compatibility in that it permits one to simulate the

effects of a plane wave incident on equipment under test in a
region large with respect to the wavelength where the field is
strictly TEM. The main restriction to the high-frequency
operation of the cell arises from the cutoff of the first higher
order mode. The new GTEM cell, shown in Fig. 1, permits
one to overcome this restriction [1]-[3]. In fact, the absence
of edges on the external surface, its tapering, and the use of
absorbing material on the end wall ought to ensure opera-
tion up to frequencies of several GHz.

As regards the uniform (i.e., without tapering) TEM cell,
many works in the literature study the distribution of the
fundamental mode. The higher order modes were investi-

gates some years ago in [4], where the first higher order
mode was treated as a perturbation to the TE ~0 mode in a
rectangular waveguide. In the same work, a comparison was
made with the results obtained considering the TEM cell as
a shielded stripline [5]. While in [4] only TE modes were
considered, as TE ~0 is the main first higher order mode,
later work included both polarizations [6]. The static capaci-
tance of the line was also reported in [7].

In the present work, we study first the propagation in a
uniform rectangular waveguide with an asymmetrically 10-
cated inner plate in order to obtain as compactly as possible
the modes of a guide of uniform cross section. Attention is
then given to the propagation in a structure with tapered
cross section as in the GTEM cell. In the first part, we use
transverse resonance diffraction (TRD) [8], taking into ac-
count the presence of the edges of the inner plate. Our
results for the uniform section show good agreement with
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Fig. 1. The GTEM cell,
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Fig. 2. The cross section.

resuits reported in [4] and [5], with very limited computer
effort.

The second part deals with the analysis of propagation on
GTEM structures, using “local modes” as in [9] but in more
general form. This method describes propagation in a
nonuniform guide through coupling of the modes of the
guide of uniform cross section that is locally tangent to the
nonuniform one (local modes). Hence, we obtain generalized
telegraphist’s equations, describing the interaction between
modes of propagation. Coupling between modes and power
transfer are examined and the frequency range for propaga-
tion of the TEM mode is determined.

II. LOCAL MODES

The analysis of this problem starts from the study of the
local section of the GTEM structure. Here we develop the
analysis by means of TRD, applied to TE and TM modes.
The local section is represented in Fig. 2. Note that in this
analysis, we consider the asymmetric position of the inner
plate. Moreover, we take into account the presence of the
edges at x = – c/2 and x = – a + c/2, where the fields
orthogonal to the edges present a singularity of the type

– l/z We consider, moreover, symmetric StrUCtLlres alongr.
the x-direction, so that we may place electric and magnetic
walls at x = – a/2 and study only half the structure along x.

0018-9480/91/0300-0488$01 .00 @1991 IEEE
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A. TE Modes where

The fields of the kth mode (apart from a normalization
coefficient) are (eXk(x,O); @.(x))=JO eX,(x,O)@.(x)a!x.

–c/2

1
hk(x, y) = – ~vtllk(x, y)

t

1
e~(x, y)=–~V’II~(x, y)X2

t

kt
hzk(x, y)= —rIk(x, y)

jwp

V~IIk(x, y)+k;II~(x, y) = O

with boundary conditions WI,&, Y )\dx = O at x = O and
x = – a, i?llk(x, y)/c?Y = O at y = – d and y = b. With these
conditions, we write

( COSk.( y - b)

..

\

.
y<o

sin knd ‘

with

1

28. n~

()(

7’
n=o

@n(x)=— Cos —x ,
Ga

8.= i

~, n#O.

If n stands for 0,2,4,.0 “, there is an electric wall at x =
– a/2; if n stands for 1,3,5,”.0, there is a magnetic wall at

x = – a/2 instead.
We can express the hZ~ field component in terms of ex~

and evaluate the following admittance operators of the up-
per and lower half-spaces [8], respectively:

hZ~(x,O+) = fu”eX~(x,O) =~~C,2Yu(x, x’)eX~(x’,0) &’

hZ~(x,O-) =fl”eX~(x,O) -~~C,2Y1(x, x’)eX,(x’,0)W

where

Yu(x, x’) =
cot (I%nbj

%%(x)qx’) k
kfw ~ n

The expression for exk(x, O) is now to be determined. In
order to take into account the presence of the edge singulari-
ties, we introduce a weight function:

1
w(x) =

m

2

1– ~
c

in the expansion of the x component of the k th field with
unknown amplitudes X~k, namely,

exk(x, O)= W(x) ~ Xmkfm(x)
m=0,2,4

with ~~(x) proportional to the Chebyshev polynomial, T~(x):

(e~=O = 1, e~~o = 2). Hence

(exk(x,O); @n(x)) = ~ X~~P~n (2)
m=0,2,4

with

rem7rc
Pmn = 8n

()
~ ( - l)m/2.1m ~

where J~ denotes the Bessel function of integer order. The
index m stands for 0,2,4, 0.” to satisfy the parity of eX~(x, O).

Now, we rewrite (1) using (2). Multiplying (1) by eXP(x, O)
and integrating in x, one obtains

#~(exk(x,o);@n(x))(exp(x,o);@n(x))
. [cot (knb) +cot(k.d)] o

=.
k.

Introducing matrix notation, we can write the above trans-
verse resonance equation as

[Y][x]=o (3)

with

k; C 8:

Yum=—– WE ---(– l)(”+L’)’2J.
jup23n (%)’(%)

. [cot (k.b) +cot(k.d)] (4)

k.

Yl(x, x’) =: pn(x)~n(x’) Cotyd). where X is the vector of the X~ components. Setting B = O,
the solutions of the equation

n
det[Y]=O

The eigenvalue equation for transverse resonance is
(5)

[iU+fl]eX,=O

give the cutoff frequencies of the TE modes with electric
wall (n = 0,2,4,.”” ) and magnetic wall (n = 1,3,5,.0 c).

or B. TM Modes

cot(knb) +ca(kntf) = o

#~@n(x)(exk(x70) ;@n(x)) k
An analogous development holds for TM modes. In this

n
case, the problem is formulated in terms of dEZ( x, O)\dx,
instead of Ez(x, 0), because the foymer has the same singu-

‘1) larity as ex, x,( O). Moreover, better convergence of the ad-
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mittance operator is obtained by this choice. The fields of
the k th mode are

1
ek(x,y)=–~Vf~~(~,Y)

t

1
hk(x, y)=–#xvtrfk(x, Y)

t

k,
ezk(x, y) = —rIk(x, y)

jw~

with

k:=k; –p=-a:-a:

v:rIk(x, y)+k:rIk(x, y)=o

and the only boundaw condition is Ilk(x, y ) = O at x = O,
x = – a, y = b, and y = – d. Therefore

An electric wall (n= 2,4,6, “””) or a magnetic wall (n=
1,3,5,””” ) is placed at x = – a/2.

Now, we can expand J(m /a)hXk(x, Y) dx in terms of

(a/ ~)dezk(x, 0)/dx and evaluate the Green’s admittances:

YU(X, X’) = ~ ~@n(x)@n(x’) >cot(~nb)
tn

Yl(x, x’) = : ~mn(x)mn(x’):cot(knd)
til

so that

Setting

(a dez~(x, O)
—

ax )
; on(x) = ~ xm~Pmn

r m= 2,4

where P~~ is as previously defined and now m starts from 2
to satisfy the boundaw conditions of the ezk(x, O) field com-
ponent, the resulting dispersion equation is

(6)

Again expanding the unknown field in terms of the same
basis on the aperture

and introducing matrix notation, the dispersion equation (6)

TABLE I
CUTOFFFREQUENCIESwrrH ONE, Two, AND THREE EXPANSION

FUNCTIONs FOR a = 6.0 m, b = d = 3.0 m, AND w = 5.0 m

Type 1 2 3

TE(even) 14.270 14.270 14.270

TE(odd) 31.816 31.819 31.819

TE<e,en) 57.373 57.374 57.374

TE(odd) 64.082 64.089 64.089

TE(even) 79.437 79.451 79.451

TE(odd) 94.426 94.558 94.558

TE(even) 103.451 103.453 103.453

TE(odd) 111.475 111.480 111.480

TE(even) 125.116 125.244 125.244

TE(odd) 130,395 130.395 130.395

TE(odd) 139.797 139.974 139.974

TE[ev.n) 144.026 144.052 144.152

TABLE II

CUTOFF FREQUENCIES WITH ONE Two, AND THREE EXPANSION
FUNCTIONS FOR a = 6.0 m, b = 1.0 m, d = 3.0 m,

AND W = 5.0 m

Type 1 2 3

TE(even) 19.799 19.980 19.980

TE(odd) 38.609 38.611 38.611

TE(even) 60.852 60.865 60.865

TE(odd) 61.061 61.069 61.069
TE(even) 77.203 77.215 77.215

TE(odd) 81.551 81.638 81.638

T%odd) 93.806 93.925 93.925
TE(even) 104.531 104.658 104.658

TE(Odd) 107.864 107.864 107.864

TE(even) 119.336 119.582 119.582

TE(odd) 129.202 129.521 129.521

TE(_) 142.208 142.286 142.286

becomes

[Y][x]=o (8)

with

Y“m = :;”&z(-l) ,m+”,/2F34m)4%
t )

$[cot(k.b)+cot( k.d)] . (9)

Setting ~ = O and the determinant of Y to zero, we obtain
the cutoff frequencies of TM modes, with electric wall (n =
2,4,6,.”. ) and magnetic wall (n = 1,3,5,0 c. ). The complete
expressions for TE and TM modes are reported in Appen-
dix I.

We have thus determined the complete spectrum of the
local section, apart from the fundamental TEM mode. We
note that the solution ~ = ko, corresponding to the TEM
mode, is contained in (3). By setting P = ko, i.e., k~ = O, from

(Al), we observe that hZk(x, Y) = 0. Thus we can assert that
the fundamental mode can be obtained from the TE mode
for ~ = kO.

C. Results for a Local Section

We have examined sections with the inner plate in a
symmetrical and an asymmetrical position. We report in
Table I the results for a symmetrical case and in Table II
those for an asymmetrical one. As can be seen, convergence
with the number of expansion functions is extremely rapid.
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TABLE III
CUTOFFFREQUENCIESIN MHz FORDIFFERENTSYMMETRICAL

(b= ~] ~=~w COM~~=% RESULTSOF[4], [s]:
w\a=O.83

2) a = 25,4 cm a/ b= 2:0 w/a= O.83

3) a = 42.34 cm a/ b=3.4 w/a= O.72
4) a=50cm a/ b=3.4 w/a= O.72

Present Work [41 [51

1 31.82 32.4 32.0

2 752.72 765.3 755.4

3 595.91 639.0 599.8
4 504.61 541.4 508.1

#
1

8

,

,

I 1
I

,

Fig. 3. Transverse components ex(x, y), e,(x, y) for the fundamental
mode for a section of dimensions a = 6 m, b = d = 3 m, and w = 4 m.

Moreover, we have good agreement with theoretical results
obtained in the literature [4], [5], as reported in Table III.

Three-dimensional plots of the transverse components of
the fundamental mode are depicted in Fig. 3 for the symmet-

Fig. 4. Transverse components ex(x, y), e (x, y) for the first higher
mode for a section of dimensions a = 6 m, ~=d=3m, andw=4m.

ric case, In this figure, it can be seen that the fields are
similar to those of a parallel-plate guide, the effects of the
lateral conducting, walls being negligible in the middle of the
section.

We also report in Fig. 4 3-D plots of the transverse
components eX(x, y) and eY(x, y) of the first higher mode of
the symmetrical case and in Fig. 5 3-D plots of the e.(x, Y)
and e$x, y) field components for the asymmetrical one. It is
evident how boundary conditions, edge conditions, and con-
tinuity at the interface are exdctly satisfied.

In Fig. 6 are reported the capacitance per unit length of
symmetric and asymmetric cross sections. Maintaining the
ratios a/b, a/d, and a / w constant along z, the character-
istic impedance is always the same. In Fig. 7 the behavior of
the equipotential lines of the fundamental mode is reported
for a symmetric and an asymmetric case.

III. COUPLING OF THE LOCAL MODES

In the previous section, we determined the complete spec-
trum of the local uniform section. Now we will use this to
determine the propagation along the whole GTEM cell,
whose section is variable along z. The dimensions of the

Fig. 5. Transverse components ex(x, y), eY(x, y) for the fundamental
mode for a section of dimensions a = 6 m, b = 2 m, d = 5 m, and
w=4m.

local section are related to z, as shown in Figs. 8 and 9:

a=2z tana b=z[tany–tantl]

d=z[tany+tan O] c=pa

with p constant along the whole structure.
Starting from the equation of the curl of the electric field

[9], we can write

[c?yEz(x,y;z)-tp,(x,y; z)]f

+[i+zEx(.x,y;z)-l?xEz(x, y;z)]j

+[ax,Ey(x,y;z)-ayEx(x, Y;z)]2= –.@wH. (@

We expand the fields Et(x, y; z) and Ht(x, y; z) in terms of
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td(b+d) = 0.5
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d/(b+d) = 0.5 A
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35 - d/(b+d)=O.75
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(a) (b)

Fig. 6. Capacitance per unit length (C\.EO) of the cross section of the present work (continuous line) compared with [7]:

(a) symmetric case;(b) asymmetriccase.

(a)

(b)

Fig. 7. Equipotential lines in the cross-section for symmetric and
asymmetric cases: (a) a\b =4, a\(b + d)= 2, a\w = 1.25; (b) a/b = 8,

a/( b+d)=2, a/w=l.25.

N local modes of the structure at the plane z:

N.,
E,(x, y;z) = ~ Vk(z)ek(x, y;z) (11)

k=l

N

IIf(x, y;z)= ~ z~(z)h~(x, y;z) (12)
k=l

Fig. 8. The y-z section of the GTEM cell.

2a

< 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ------- ~

x

L

z

Fig. 9. The x-z section of the GTEM cell.

where ek(x, y; z) and hk(x, y; z) are dimensionless fields
that are explicit functions of x, y; they implicitly depend on
the longitudinal coordinate z and are normalized as

/(t?k ~,y;z)xhp(x,y;z)”zd~=~kp.
s

Impedances (or admittances) enter in the Vk(z)’s and
lk(z)’s. The solution of the problem involves evaluating the
modes ek(x, y; z) and hk(x, y; z) (determined in the previ-
ous section) and amplitudes Vk(z) and ~k(z). By (11) and



DE LEO et al.: RIGOROUS ANALYSIS OF GTEM CELL 493

(12), the transverse component of (10) can be expressed as ,----------- ----------- ----------- -------,
1 I

N
1

{ }

I
1 I

dYEz(x, y;z)–dz ~ Vk(z)eYk(x, y;z) 1 I
I I

k=l
I
I Y! i
1

N 1-------.--------.--.--.--- -

.— jo~ ~ Ik(z)hXk(x, y;z) (13) [ ‘---------------------------’ ~-x
k=l I

I
1

{

N
I

1

)

I
1

~z ~ hc(z)exAx>Y; z) –~xEz(x)Y; z)
1 1
1 1

k=l 1 .:1
1 I

N I

–jo~ ~ Zk(z)/2Yk(x, y;z). (14) [
1

. 1
I

k=l
I

I-------.- ------ ..-----.-----------------

Multiplication of (13) by hXP and (14) by h ~P and summing Fig. 10. Integration path in the multiply connectedcrosssection.
yields

f az[vk(z)] [exk(x> y;z)hyp(x, y;z)

k=l

–eyk(x, y;z)hxp(x, y;z)]

contour,

N

~z(~, Y; Z)lconto.r = ~ ~k(Z)~zIC(~,Y;Z) (W

k=l

N with—— –jtip ~ Zk(z)hk(x, y;z)”hP(x, y;z)
k=l

I_

eY(x, y;z)tany Vx, y=b

+OXIEz(x, y;z)]hYP(x, y;z) eY(x, y;z)tany Vx, y=–d

–~Y[E,(X, Y; Z)]hXp(X, Y;Z) lzk(x, y;z)= eX(x, y;z)tana Vy, x=–a

N —eX(x, y;z)tana Vy, x=o
+ ~ Vk(z)dz[eYk(x, y;z)]hXP(x, y;z) —

k=l
eY(x, y;z)tan O on the inner plate.

(17)
- ~ Vk(z)8z[exk(x, y;z)]hYP(x, y;z). (15)

k=l The complete spectrum we have just determined is complete

The spectrum obtained in the previous section satisfies the and orthogonal; thus, it is sufficient to represent arbitrary

conditions of vanishing EZ on the boundary and on the inner continuous functions that do not vanish anywhere on the

plate for the uniform structures. In the tapered structure, bounda~ of the structure except on the boundary itself.

however, the field component that must vanish is the electric Imposing the boundary conditions on the sloping conductors

field tangential to the sloping conductors of Figs. 8 and 9. produces coupling between the local modes.

Therefore the boundary conditions on the actual structure Recalling that in a multiply connected surface

are

Et.n(~, b;z)=Etan(~, –d; z)= Etan(O, y;z)
/~(~,y)’g(;’y) ds= -@,y)’~(:;y) ds
s x

=Et,n(–a, y;z)=O

Etan(x, O; z) = O (on the inner plate).
—f(w)dw)dy

From Fig. 8, we can write the first equation above as where f comprises the external contour in the anticlockwise

Et,n(x, b;z)=Ez(x, b;z)cosy +EY(x, b;z)siny=O direction and the inner contour in the clockwise direction, m
shown in Fig. 10. substitution of (16) and (17) in (15) and

or integration ii the’ cross section yields

Ez(x, b;z)=– EY(x, b;z)tany. N N

c?z~k(Z) = – ~ ~~p(z)~’(z)–j x Xkp(.z)lp(z),

Recalling the expansions (11) and (12) for EY we can write p=l p=l

the last equation as
k=l,2,3,.. - , N. (18)

N..
EZ(x, b;z)= – ~ ~k(z)ey(~,b;z)tan~ Analogous developments on the curl of the magnetic field

k=l yield

= f Vk(z)lz,(x, b;z)
k=l

N N

r?zzk(z)= – ~ D/Jz)zp(z)-j z B@(z)vp(z),
p=l p=l

with lzk(x, b;z)= – eY(x, b; Z)tany.
With analogous developments for the other boundary con-

k=l,2,3, ””. , N. (19)

ditions, we can write, in a compact form on the conducting Equations (18) and (19) are the telegraphist’s equations for
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the structure varying along z, with

~kp(z)=J~z[ep(~,y;z)]xhk(x, y;z)”2ds
s

J(– /zp X,y; z))’zxk(x, y;z)dx

/+ /zp(xjY;z)hyk(x, Y;z)dY

Dkp(z)=/ek(x, y;z)Xdz[hp(x, y;z)]. zds
s

{

~~[phk(x,y;z)~k(x,y;z)+~e,k(x,y;z)ezk(x,y;z)]ds, k=p
Xkp(z)= ~ s

k+p

Bkp(z) =

[

~~[~ek(~,y;z)ek(x,y ;z)+phz,(~,y;z)hzk(x,y jz)]d~, k=p

o, k+p

and their expressions are reported in Appendix II.
We observe that (18) and (19) are more general than the

classical telegraphist’s equations for conventional transmis-
sion lines [9], since in addition to the distributed series
reactance XkP(z) and shunt susceptance BkP(z), they con-
tain “voltage transfer coefficients” A ~P(z) and “current
transfer coefficients” Dkp(z). These terms take into account
power transfer between the “local” modes of a structure that
changes along the z direction. Where the change of section
is abrupt, power transfer is strong. Moreover, the effect of
the enlarging cross section along z is that higher modes
become propagating. In GTEM structures with end sections
of the order of several square meters, there are many local
modes in propagation at frequencies greater than 500 to 700
MHz.

We have solved (18) and (19) taking into account the
dependence on z. In particular, for the kth mode, Pk =

kOJ_, where fC depends on the dimensions of

the section. We have observed that for a structure with all
walls varying along z, as shown in Fig. 8 and Fig. 9, the
cutoff frequencies of every mode are inversely proportional
to z. Then fC of the kth mode at any section can be
evaluated from f, at the final section, so that

(20)

where fck is the cutoff frequency of the k th mode at the
final section. In this way, at a given frequency f, we can also
determine the position where a mode enters into propaga-
tion. In the following, the effects of the modes below cutoff
are neglected.

IV. ANALYSIS OF THE GTEM CELL

We have examined how the GTEM cell behaves as a
function of frequency, considering LY= 15°, y = 10”, 0 = 5°,
and p = 0.64. We report in Fig. 11 the behavior of IVI and III

versus z for the fundamental mode at 100 MHz. The ratio
between IVI and III is always the air impedance; moreover,
the period is constant. Observing IVI and IZI of the first
higher mode (Fig. 12), we notice that they show a variable
period along z, due to the variation of ~ along z of type
(20).

A plot of the power distribution along z is reported in Fig.
13. Here the power is carried substantially by the fundamen-
tal mode, the higher order local mode entering into propaga-
tion only at z = 3 m.

As reported in Fig. 14, we can observe how the /3’s of the
modes, moving along z, tend to the value kO, i.e., the
propagation constant of a TEM wave. As the frequency is
increased, the value kO is reached earlier. The k th mode
with pk = kO tends to a quasi-planar wave and transfers
power with the fundamental mode.

Increasing the frequency, higher local modes enter into
propagation at sections closer to the initial one (Figs. 15 and
16). Therefore, coupling between higher order modes occurs,
as shown in Figs. 17 and 18. At 700 MHz we note a
remarkable amount of power carried by the first higher
order local mode; at 1 GHz the power is, instead, distributed
over all local modes in propagation, even if we neglect
modes greater than the fifth.

V. CONCLUSIONS

This work analyzes the GTEM cell, using the concept of
“local modes.” The cutoff frequencies and the modes of the

uniform structure are determined and then applied to the

analysis of the structure tapered along z.

In the presence of an object under test in the cell, many

local modes are excited. Their amplitudes depend on the

object geometry and position and can be evaluated by vari-

ous methods. This information is required in determining the
electromagnetic signature of the object under test. This
problem is now under investigation.
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Fig. 11. (a) Behavior of [Vl versus z of the fundamental mode. (b)
Behavior of III versus z of the fundamental mode.
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Fig. 12. (a) Behavior of Iv I versus z of the first higher mode. (b)
Behavior of III versus z of the first higher mode.
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Fig. 14. Behavior of the normalized propagation constants along the z axis of the cell at 100 MHz.
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Fig. 15. Behavior of the normalized propagation constants along the z axis of the cell at 300 MHz.
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APPENDIX I

TE

exk(x, y)=hyk(x, y)

2C5n
=Fk~ : xmkzPmnTcos(;x)

m=0,2,4 n

I sinkn(y – b)
— yao

sin knb ‘

“1sin kn( y + d)
y<o

sin k.d ‘

eyk(x, y)=–hxk(x, y)

n7r 2tln
=F~m f ‘mk~pnm;~ (n: );sin —x

m==0,2,4 n n

“1
coskn(y – b)

y>o
sin knb ‘

(Al)
coskn(y+d)

— y<o
sin knd ‘

1COSkn( y – b)
— y>o

sin knb ‘

“1coskn(y+d)
y<o,

sin knd ‘

TM

t?x~(X, y)=hYk(X, y)

1sin k.( y – b)
— y>o

sin k“b ‘

“1sinkJy+d)
, y<o

sin knd

f?yk(~, y) = ‘hxk(x, y)

1
COSk.( y – b)

y>o
sin k.b ‘

(A2)
COSk.( y + d)

— , y<o
sin k.d

.1
sin kn( y – b)

y>o
sin k~b ‘

“1sin kn( y + d)
y<o

sin k.d ‘

F:E =
{

; Xmk ; xu&pm#On;
m=0,2,4 v=0,2,4 n n

[( )

- 1/2n721
._

#~3+~4)+(~1+~2)
a 1)
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F;M =
(

f Xmk g x.k~PmnP”n&
m= 2,4 v=2,4 n

[( )
nrr21 1}

–1/2

._
j@+f2)+(f3+f4)an

k.b + ~ sin2k~b k.d i- ~ sin2knd
f,= f2 =

sin2knb sin2 k.d

knb – ~ sin2knb k.d – ~ sin2k.d
f3 = f,=

sin2 k.b sin2 k~d “

When n stands for (), ‘2, 4,. ... the correspondent mode has

an electric wall at x = – a/2; otherwise it has a magnetic
wall.

APPENDIX II

When modes k and p see the same wall, electric or

A3=tanf?~ ~ : feym(w)f~x,(k,z)+
n m=0,2,4i =0,2,4 n

~[-cot (k.,b)cot(k.Pb) +cot(k.kd)cc)t( knPd)]

+tany~ ~ f f.ym(df/#,d;
n m=0,2,4i =0,2,4 n

~[csc(k.,b)csc(k.Pb) +csc(k.,d)csc(knPd)]

+tanax f f ~f,x~(p,z)f~y,(k,z)
n m=0,2,4c =0,2,4 j

(.
G1(y=b)+G1(y=d), k#p

.(-l)”+j G1(y=b)+G1(y= d), k=p, ?z#j

G5(y=b)+G5(y=d), k=p, n=j

sin (Knk – ICjP)y sin (Knk + Kjp) y

(K., - ‘jp) - (K., + ‘jp)

Gl(y) =
sin(K.ky)sin(Kjpy)

magnetic, Akp = A1+A2+ A3, DkP = Al +A2; with

sin(K.k – Kjp)Y + sin(~nk + ‘jp)Y

A1=~ : : Xf.,i(p> z)f~y~(k,z)&xx( j,n) G3(Y) = ‘K”’ - ‘j~)
(K.k + ‘jp)

n ?n=0,2,4i =(),2,4 j
sin(~nkY)(~jpY)

1
GJy=b)+G1(y=d), k#p K

[

2%Y
“ G1(y=b)+G1(y=d), k=p, n+j ‘z(y) = 2sin(Knky~in(KnPY) – (K;P–– ‘~lc)

G5(y=b)+G5(y=d), k=p, n=j

Sh (Knk – Knp)y sin (K.k + KnP)y—

+x ~ ~ fexi(px)f/zym(k,z& (Knk- &p)2 - (&k+ Knp)’
n m=Cl,2,4j=o,2,4 1

A2

[

G2(y=b)+G2(y=d), k#p ~

“ ;[G5(y= b)+ G5(y= d)], k=p+p

1
–G3(y=b)– G3(y=d), k+p

–G3(y=b)– G3(y=d), k=p, n#j

–G6(y=b)– G6(y=d), k=p, n=j

+x fi f feyi(pAf/zxm(kz)~
II n2=0,2,4i=o,2,4

(- G,(y=b)-G,(y=d), k+p

“[-:[@=b)+G5(y=d)],k=p

K

[

2Knp y

‘4(Y) = 2sin(K.kYLin(KnPY) – (K&- ‘~k)

) sh(Ic.k + K.p)Ysin (Knp – K~~ y

+ (K~p - Kn/J2 - (K~P+ K~k)2 1
sin(2K.ky)

y–
sin(2KM~y)

2K~k
y+

G5(y) = G6(y) =
2Knk

sin2(Knky) sin’ (Knky)

xsc(n, j)

[

o, n=O
a’

——
. 4n~ ‘

n=j#O

[

a2 cos(n–j)r cos(n+ j)m
——

27r
+

n–j
1

n#j.
n+j ‘
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The indices n and j in the summations stand for 0,2,4, . . .
or 1,3,5,.””, corresponding to electric and magnetic walls
respectively.

Instead, when modes k and p do not see the same wall,
AkP= A3+ A4 and D~P = A4, with

A,=-~ : f zfexi(P>z)f/JfW;
n m=0,2,4i =0,2,4 j

“[cos(j–n)m
+ 1Cos:++jj)m[Gl(y = b)

j–n

+G1(y=d)]–~ : f xf.,i(Pjz)
n rn =0,2,4 i= 0,2,4 j

[

na cos(n–j)~
J,m(k,z)c

cos(n+ j)m
+

n–j n+j 1

.[G3(Y=b) +G3(Y=d)]~ ,k+p.

Here the index n stands for 0,2,4, ~. ~ or 1,3,5,0 ... accord-
ing to whether the k th mode presents an electric or a
magnetic wall.’ The
mode. Moreover.

same holds for the index j and the p th

1 28n

ln=h

and

fezm(k, z)= fk,m(k, z)

‘1
1

F:E&~ Pmn~
for TE with electric
and magnetic walls

——
L for TM with electric——

‘F~Xmkpmn [. a and magnetic walls

fe,m(k,z )=fkxm(k,z)

[

1 nm-
F:E~mk Pmn— —

for TE with electric

[~ knka and magnetic walls
——

1 kn~

F;”xmkf’mn ~“ n

for TM with electric——

n
and magnetic walls “

As regards BkP and XkP, we obtain

(WE for any TM mode

[w for any TE mode”

{

Xkk== p:
— for any TM mode
we

B~p=xkp=o, p+k.
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