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Rigorous Analysis of the GTEM Cell

Roberto De Leo, T. Rozzi, Fellow, IEEE, Carlo Svara, and Leonardo Zappelli

Abstract —This work deals with the modeling of the new GTEM cell,
recently in use for field measurements, which consists of a tapered
rectangular waveguide loaded with an eccentric sloping plate conductor.
We derive the fields of the cross section of the uniform structure by
transverse resonance diffraction and apply the “local modes” approach
to the study of the longitudinal field distribution. The first few modes of
the cell are obtained. Numerical results agree with those in the litera-
ture, where available. The treatment is highly accurate and requires no
meore computer power than that of a desktop computer.

1. INTRODUCTION

HE TEM cell is a fundamental tool in electromagnetic

compatibility in that it permits one to simulate the
effects of a plane wave incident on equipment under test in a
region large with respect to the wavelength where the field is
strictly TEM. The main restriction to the high-frequency
operation of the cell arises from the cutoff of the first higher
order mode. The new GTEM cell, shown in Fig. 1, permits
one to overcome this restriction [1]-{3). In fact, the absence
of edges on the external surface, its tapering, and the use of
absorbing material on the end wall ought to ensure opera-
tion up to frequencies of several GHz.

As regards the uniform (i.e., without tapering) TEM cell,
many works in the literature study the distribution of the
fundamental mode. The higher order modes were investi-
gates some years ago in [4], where the first higher order
mode was treated as a perturbation to the TE;, mode in a
rectangular waveguide. In the same work, a comparison was
made with the results obtained considering the TEM cell as
a shielded stripline [5]. While in [4] only TE modes were
considered, as TE,, is the main first higher order mode,
later work included both polarizations [6]. The static capaci-
tance of the line was also reported in [7].

In the present work, we study first the propagation in a
uniform rectangular waveguide with an asymmetrically lo-
cated inner plate in order to obtain as compactly as possible
the modes of a guide of uniform cross section. Attention is
then given to the propagation in a structure with tapered
cross section as in the GTEM cell. In the first part, we use
transverse resonance diffraction (TRD) [8], taking into ac-
count the presence of the edges of the inner plate. Our
results for the uniform section show good agreement with
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The GTEM cell.

Fig. 1.

Fig. 2. The cross section.

results reported in [4] and [5], with very limited computer
effort.

The second part deals with the analysis of propagation on
GTEM structures, using “local modes” as in [9] but in more
general form. This method describes propagation in a
nonuniform guide through coupling of the modes of the
guide of uniform cross section that is locally tangent to the
nonuniform one (local modes). Hence, we obtain generalized
telegraphist’s equations, describing the interaction between
modes of propagation. Coupling between modes and power
transfer are examined and the frequency range for propaga-
tion of the TEM mode is determined.

1I. LocaL MobpEs

The analysis of this problem starts from the study of the
local section of the GTEM structure. Here we develop the
analysis by means of TRD, applied to TE and TM modes.
The local section is represented in Fig. 2. Note that in this
analysis, we consider the asymmetric position of the inner
plate. Moreover, we take into account the presence of the
edges at x=—c/2 and x=—a+c/2, where the fields
orthogonal to the edges present a singularity of the type
r~!2. We consider, moreover, symmetric structures along
the x-direction, so that we may place electric and magnetic
walls at x = — g /2 and study only half the structure along x.

0018-9480,/91 /0300-0488$01.00 ©1991 IEEE
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A. TE Modes

The fields of the kth mode (apart from a normalization
coefficient) are

1
_VtHk(xa y)

hk(xay)=_k
t

1
ek(x3 y) =- Z—thk(x’ y) X 2
t

k
hzk(x’Y)= . d Hk(x:Y)
Jjou
k}=k}-p>=—-32-0;

Vtznk(x’y)+ktznk(x’y) =0

with boundary conditions a11,(x,y)/dx=0 at x=0 and
x=—a, dll(x,y)/d,=0at y=—d and y = b. With these
conditions, we write

cosk,(y—b)
k, " sink,b y>0
hzk(x’y)=j_w;§q)n(x)Vn cosk,,(y+d)
sink,d <0
with
1
28, (nw 7 n=0
@n(x)=7cos(7x), 8, =4 {
\/_E-’ n#0.

If n stands for 0,2,4,-- -, there is an electric wall at x =
—a /2; if n stands for 1,3,5,- - -, there is a magnetic wall at
= —a /2 instead.
We can express the &, field component in terms of e,
and evaluate the following admittance operators of the up-
per and lower half-spaces [8], respectively:

hzk(x’0+) =Yu'exk(x’0) E/i)c/zyu(x’x')exk(x'90) dx’

A 0
hzk(x90_) = Yl'exk(x90) E[_C/2Y1(x’x’)exk(x’70) dx’

where

k2 t(k,b
Yu(x’x,)=jw_2q>n( () ( )

Yl
t(k d)
Yy(x,x)=— }:<1> (x)®, (x’)
The eigenvalue equation for transverse resonance is
[?u'l'?l] .exk=0
or

&.(x)) cot(k,,b);—cot(k,,d) _

k?
m gq)n(x)<exk(x’0);

n

(1
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where

a0 8 (0) = [ e, (x) .

The expression for e, (x,0) is now to be determined. In
order to take into account the presence of the edge singulari-
ties, we introduce a weight function:

1

()

in the expansion of the x component of the kth field with

W(x)=

unknown amplitudes X,,,;, namely,
e (,0)=W(x) L X,ifu(x)
m=0,2,4
with f,(x) proportional to the Chebyshev polynomial, 7,,(x):
2x
6=y 221, ()
(€,,_0=1, €,,.0=2). Hence
(e(%,0);D,(x)>= X  X,iPy, (2)
m=0,2,4
with

E’;TTC 2 nwc
an ’;d (_1)m/ Jm( Za)

where J,, denotes the Bessel function of integer order. The
index m stands for 0,2,4, - - - to satisfy the parity of e,,(x,0).

Now, we rewrite (1) using (2). Multiplying (1) by e, (x,0)
and integrating in x, one obtains

k2
j_wiﬁ %‘,(exk(x,O);<I>,,'(x)><exp(x,0);

®,(x))
ot (k,b) +cot (k,d)]
k, -

Introducing matrix notation, we can write the above trans-
verse resonance equation as

[Ylix]=0 )
with
me nic nirc
Yum—}EE”Z\/f—rEZ—( nmrr, ( 2a )J”(-Z—a—)
k,b knd
. [cot( );‘COt( )] @)

n

where X is the vector of the X, components. Setting 8 =0,
the solutions of the equation

det[¥Y]=0 (5)

give the cutoff frequencies of the TE modes with electric
wall (n=0,2,4, - - ) and magnetic wall (n=1,3,5,- ).

B. TM Modes

An analogous development holds for TM modes. In this
case, the problem is formulated in terms of dE,(x,0)/dx,
instead of E,(x,0), because the former has the same singu-
larity as e,;(x,0). Moreover, better convergence of the ad-
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mittance operator is obtained by this choice. The fields of
the kth mode are

1
e(x,y)=- k_VtHk(x>y)
t

he(x,y)=——2xVI(x,y)

1 A
—2
k,
k,
ezk(x’y) = Hk(x’ y)
Jwe
with
k? -B2= —a;

Vtzl'[k(x,y) + k,zl'[k(x,y) =0

and the only boundary condition is I, (x,y)=0 at x=0,
x=—a, y=»b, and y = — d. Therefore

sink,(y—b)
-—, y20
k, o ! sin kb
(X, y)=— M .
#(%,7) jwe ()1, sink,(y+d)
—, yx0
sin k,,d

26, nw
d(x)= sin(Tx).

Va
An electric wall (n=2,4,6,--) or a magnetic wall (n=
1,3,5,---)is placed at x=—a /2.

Now, we can expand [(w/a)h,(x,y)dx in terms of
(a /7)de,;(x,0)/dx and evaluate the Green’s admittances:

Zfb (x)®, (x) 2 > cot (k,b)

Y, (x, x)— K2

‘Yo, (x)(D(x)iz cot (k,d)

Yi(x, x)— kz ]

so that
v a de,(x,0)
e

T . a deu(x,0)
[ T30 e =, 2 200,
a T

/ Bo(x,0%) dx =

ox

Setting

a de,,(x,0)
<—T;<Dn(x)>= >

g m=2,4

where P,,, is as previously defined and now m starts from 2
to satisfy the boundary conditions of the e,,(x,0) field com-
ponent, the resulting dispersion equation is

[Yu ;] a 6ezk(x 0) ©)

Again expanding the unknown field in terms of the same
basis on the aperture
a de . (x,0)

T dax

L Xpefm(x)W(x)

m=2,4

(7)

and introducing matrix notation, the dispersion equation (6)

TABLE 1
Curorr FREQUENCIES WITH ONE, Two, AND THREE EXPANSION
FuncTioNs FOR a=6.0m, b=d =3.0m, anp w=5.0m

Type 1 2 3
TE (even) 14.270 14.270 14.270
(0dd) 31.816 31.819 31.819
evem) 57.373 57374 57.374
(0dd) 64.082 64.089 64.089
oven) 79.437 79.451 79.451
E(odd) 94.426 94.558 94.558
(even) 103.451 103.453 103.453
(odd) 111.475 111.480 111.480
(even) 125.116 125.244 125.244
(0dd) 130.395 130.395 130.395
Eodd) 139.797 139.974 139.974
evem) 144.026 144.052 144.152

TABLE 11

Curorr FreQuUENcIES wiTH ONE Two, AND THREE EXPANSION
FuncTions ForR a=6.0m, b=1.0m, d=3.0m,
AND w=5.0m

Type 1 2 3
TE (even) 19.799 19.980 19.980
TE (oaq) 38.609 38.611 38.611
(evem 60.852 60.865 60.865
(0dd) 61.061 61.069 61.069
ceven) 77.203 77.215 77.215
(0dd) 81.551 81.638 81.638
(0dd) 93.806 93.925 93.925
(oven) 104.531 104.658 104.658
(odd) 107.864 107.864 107.864
(even) 119.336 119.582 119.582
0dd) 129.202 129.521 129.521
(oven) 142.208 142.286 142.286
becomes
[Yl[x]=0 (8)
with
]we c (m+ 032 nwe nwe
sTVeme, (=177 Z S el 55

n—; [cot (k,b)+cot(k,d)].

Setting B =0 and the determinant of Y to zero, we obtain
the cutoff frequencies of TM modes, with electric wall (n =
2,4,6, ) and magnetic wall (n=1,3,5, -+ ). The complete
expressions for TE and TM modes are reported in Appen-
dix I.

We have thus determined the complete spectrum of the
local section, apart from the fundamental TEM mode. We
note that the solution B = kg, corresponding to the TEM
mode, is contained in (3). By setting 8 = k,, i.c., k, = 0, from
(A1), we observe that 4,,(x,y)=0. Thus we can assert that
the fundamental mode can be obtained from the TE mode
for B = k.

C. Results for a Local Section

We have examined sections with the inner plate in a
symmetrical and an asymmetrical position. We report in
Table I the results for a symmetrical case and in Table II
those for an asymmetrical one. As can be seen, convergence
with the number of expansion functions is extremely rapid.
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TABLE III
Curtorr FrReQUENCIES IN MHz FOR DIFFERENT SYMMETRICAL
(b = d) StrucTURES COoMPARED WITH REsuLTS oF [4], [5]:

VDa=6m a/b=20 w/a=083

2) a=254cm a/b=20 w/a=1083

3) a=4234 cm a/b=34 w/a=072

4) a=50cm a/b=34 w/a=072

Present Work 4 - (5]

1 31.82 324 320
2 752.72 765.3 755.4
3 595.91 639.0 599.8
4 504.61 541.4 508.1
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Fig. 3. Transverse components e (x,y), e (x,y) for the fundamental
mode for a section of dimensions a=6m, b=d=3m, and w =4 m.

Moreover, we have good agreement with theoretical results
obtained in the literature [4], [5], as reported in Table III.

Three-dimensional plots of the transverse components of
the fundamental mode are depicted in Fig. 3 for the symmet-
ric case. In this figure, it can be seen that the fields are
similar to those of a parallel-plate’ guide, the effects of the
lateral conducting walls being negligible in the middle of the
section.

We also report in Fig. 4 3-D plots of the transverse
components e,(x,y) and e (x,y) of the first higher mode of
the symmetrlcal case and in Fig. 5 3-D plots of the e, (x,y)
and e (x, y) field components for the asymmetrical one. It is
evident how boundary conditions, edge conditions, and con-
tinuity at the interface are exdctly satisfied.

In Fig. 6 are reported the capacitance per unit length of
symmetric and asymmetric cross sections. Maintaining the
ratios a /b, a /d, and a /w constant along z, the character-
istic impedance is always the same. In Fig. 7 the behavior of
the equipotential lines of the fundamental mode is reported
for a symmetric and an asymmetric case.

III. CoupLING OF THE LocaL MoODEs

In the previous section, we determined the complete spec-
trum of the local uniform section. Now we will use this to
determine the propagation along the whole GTEM -cell,
whose section is variable along z. The dimensions of the

Fig. 4. Transverse components e,(x,y), e,(x,y) for the first higher
mode for a section of dimensions ¢ = 6 m, g= d=

3m, and w=4m.

Fig. 5. Transverse components e (x,y), e(x,y) for the fundamental
mode for a section of d1mens1ons a=06 m, b 2m, d=5 m, and

w=4m.

local section are related to z, as shown in Figs. 8 and 9:
a=2ztana b=z[tany —tan @)
d=z[tany +tan @] c=pa

with pbconstant along the whole structure.
Starting from the equation of the curl of the electric fleld
[9], we can write

[ayEz(x, y;2)=90,E (x, ¥ z)]:’é
+[8,E(x,y;2) = 8, E(x,y;2)]§
+ [axEy(x,y;z)—3yEx(x,y;z)]2= — jouH. (10)
We enpand the fields E(x,y;z) and H/x,y;z) in terms of
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Fig. 6. Capacitance per unit length (C/€,) of the cross section of the present work {continuous line) compared with [7]:
(a) symmetric case; (b) asymmetric case.

=

(a)

R ———
m————

(b)
Fig. 7. Equipotential lines in the cross-section for symmetric and

asymmetric cases: (@) a/b=4,a/(b+d)=2,a/w=125;(b)a/b=38,
a/b+d)=2,a/w=125

N local modes of the structure at the plane z:

N
Et(x,y;2)=k§1 Vi(2)ep(x,y;2) (11)

N 1}
H,(x,y;2)=kZ L(2)h(x,y;2) (12)
=1

Fig. 8, The y-z section of the GTEM cell.

Fig. 9. The x~-z section of the GTEM cell.

where e,(x,y;z) and h,(x,y;z) are dimensionless fields
that are explicit functions of x, y; they implicitly depend on
the longitudinal coordinate z and are normalized as

fek(x,y;z) Xh,(x,y;2z) zds =8,
5

Impedances (or admittances) enter in the V,(z)s and
I,(z)s. The solution of the problem involves evaluating the
modes e,(x,y;z) and h,(x,y;z) (determined in the previ-
ous section) and amplitudes V,(z) and I,(z). By (11) and
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(12), the transverse component of (10) can be expressed as
N
ayEz(xa y7Z) _az{ Z Vk(z)eyk(x9y; Z)}
k=1

N
=—jop Y, L(z2)hu(x,y;2)
k=1

N
az{kz Vk(z)exk(x: y;z)} _asz(x7 y;z)
=1

(13)

(14)

N
= _jw/"’ Z Ik(z)hyk(x7 y,z)
k=1

Multiplication of (13) by &,, and (14) by A,, and summing
yields

éaz[yk(z)] [ea(x,y;:2)h,,(x,y;2)
— ey(%,¥32) (%, 73 2)]
= — jou % L(2)hi(x,y;2) hy(x,y;2)
+ax[EI:(=;,y;Z)]hyp(x,y;Z)
=0, E.(x,y;2)]hyp(x,¥52)

N
+ kgl Vk(z)az[eyk(x,y;z)]hxp(x,y;z)

N
_ k;1 Vi(2)d,[ei(x,y;2))hy,(x,¥52). (15)

The spectrum obtained in the previous section satisfies the
conditions of vanishing E, on the boundary and on the inner
plate for the uniform structures. In the tapered structure,
however, the field component that must vanish is the electric
field tangential to the sloping conductors of Figs. 8 and 9.
Therefore the boundary conditions on the actual structure
are

Euon(x,052) = Egn(x, = d;2) = Eipy (0,55 7).
| =Em(—a,y;2)=0
E.n(x,0;z) =0 (on the inner plate).
From Fig. 8, we can write the first equation above as
Epn(x,b;2) =E,(x,b;z)cosy + E,(x,b;z)siny=0
or
E.(x,b;z)=—E/(x,b;z)tany.

Recalling the expansions (11) and (12) for E, we can write
the last equation as

N
E,(x,b;z)=— X Vi(2)e,(x,b;z)tany
k=1

N .
= X Vi(2)4(x,b;2)
k=1

with /,,(x,b;z) = — e (x,b; z)tany.
With analogous developments for the other boundary con-
ditions, we can write, in a compact form on the conducting
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gpzz=====

Fig. 10. Integration path in the multiply connected cross section.

contour,

N
Ez(x’Y;Z)lcontour= Z Vk(z)lzk(x’)’;z) (16)
k=1

with
—e,(x,y;z)tany Vx,y=»b
e,(x,y;z)tany Vx,y=-—d
L(x,y;2)={e(x,y;z)tane Vy,x=—a
—e(x,y;z)tana Vy,x=0
—e,(x,y;z)tand on the inner plate.

(17)

The complete spectrum we have just determined is complete
and orthogonal; thus, it is sufficient to represent arbitrary
continuous functions that do not vanish anywhere on the
boundary of the structure except on the boundary itself.
Imposing the boundary conditions on the sloping conductors
produces coupling between the local modes.

Recalling that in a multiply connected surface

d ) d ’
Lf(x,y)i;c—{zdS=—Lg(x,y)%2ds

—flf(x,y)g(x,y)dy

where [ comprises the external contour in the anticlockwise
direction and the inner contour in the clockwise direction, as
shown in Fig. 10, substitution of (16) and (17) in (15) and
integration in the cross section yields

N N
ank(z) == ZlAkp(z)Vp(z)_j Zlep(‘Z)Ip(z)’
p= p= :

k=1,2,3,-+,N. (18)

Analogous developments on the curl of the magnetic field
yield

N N
azIk(Z) = Zlep(z)Ip(Z)_j' Elka(z)Vp(z)’
p= p=

k=1,2,3,--,N. (19)
Equations (18) and (19) are the telegraphist’s equations for



494 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 3, MARCH 1991

the structure varying along z, with

Akp(z)='/;az[ep(x,y;z)] th(xay;z)'fds

—_’l‘lzp(x’y;z)hxk(x’y;z)dx

+fllzp(x,y;2)hyk(x,y;2)dy

Dy,(z) ='/;ek(x,y;z) xaz[hp(x,y;z)] -zds

o[ [nh(x,y;2) hi(x,y52) + e (x,y52)eu(x,y52)] ds, k=p

ka(z)= M k;&p

B, (z)= wfs[eek(x,y;Z)'ek(x,y;Z)+nh2k(x,y;2)hzk(x,y;.2)]ds, k=p
kp -

k#p

H

and their expressions are reported in Appendix II.

We observe that (18) and (19) are more general than the
classical telegraphist’s equations for conventional transmis-
sion lines [9], since in addition to the distributed series
reactance X ,(z) and shunt susceptance B, (z), they con-
tain “voltage transfer coefficients” A, (z) and “current
transfer coefficients” D, (z). These terms take into account
power transfer between the “local” modes of a structure that

' changes along the z direction. Where the change of section
is abrupt, power transfer is strong. Moreover, the effect of
the enlarging cross section along z is that higher modes
become propagating. In GTEM structures with end sections
of the order of several square meters, there are many local
modes in propagation at frequencies greater than 500 to 700
MHz.

We have solved (18) and (19) taking into account the
dependence on z. In particular, for the kth mode, B, =

koV1-(f./f )2, where f, depends on the dimensions of
the section. We have observed that for a structure with all
walls varying along z, as shown in Fig. 8 and Fig. 9, the
cutoff frequencies of every mode are inversely proportional
to z. Then f, of the kth mode at any section can be
evaluated from f_ at the final section, so that

zendfck 2
- g1~ 2l )

where f_, is the cutoff frequency of the kth mode at the
final section. In this way, at a given frequency f, we can also
determine the position where a mode enters into propaga-
tion. In the following, the effects of the modes below cutoff
are neglected.

(20)

IV. ANaLysis or THE GTEM CELL
We have examined how the GTEM cell behaves as a
function of frequency, considering a =15°, vy =10°, 0 =5°,
and p = 0.64. We report in Fig. 11 the behavior of |V/| and |I|

versus z for the fundamental mode at 100 MHz. The ratio
between |V| and |I| is always the air impedance; moreover,
the period is constant. Observing |V| and |I| of the first
higher mode (Fig. 12), we notice that they show a variable
period along z, due to the variation of B along z of type
20).

A plot of the power distribution along z is reported in Fig.
13. Here the power is carried substantially by the fundamen-
tal mode, the higher order local mode entering into propaga-
tion only at z =3 m.

As reported in Fig. 14, we can observe how the B’s of the
modes, moving along z, tend to the value kg, ie., the
propagation constant of a TEM wave. As the frequency is
increased, the value k, is reached earlier. The kth mode
with 8, = k, tends to a quasi-planar wave and transfers
power with the fundamental mode.

Increasing the frequency, higher local modes enter into
propagation at sections closer to the initial one (Figs. 15 and
16). Therefore, coupling between higher order modes occurs,
as shown in Figs. 17 and 18. At 700 MHz we note a
remarkable amount of power carried by the first higher
order local mode; at 1 GHz the power is, instead, distributed
over all local modes in propagation, even if we neglect
modes greater than the fifth.

V. CONCLUSIONS

This work analyzes the GTEM cell, using the concept of
“local modes.” The cutoff frequencies and the modes of the
uniform structure are determined and then applied to the
analysis of the structure tapered along z.

In the presence of an object under test in the cell, many
local modes are excited. Their amplitudes depend on the
object geometry and position and can be evaluated by vari-
ous methods. This information is required in determining the
electromagnetic signature of the object under test. This
problem is now under investigation.
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Fig. 12. (a) Behavior of |V| versus z of the first higher mode. (b)

Fig. 11. (a) Behavior of |V| versus z of the fundamental mode. (b) Behavior of |1|versus z of the first higher mode.

Behavior of |I| versus z of the fundamental mode.
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Fig. 15. Behavior of the normalized propagation constants along the z axis of the cell at 300 MHz.
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Fig. 16. Behavior of the normalized propagation constants along the z axis of the cell at 700 MHz.

T T T T T T T T T T T T T

fundamental mode

|

higher order modes

NORMALIZED POWER [dB]
S
1

U

—

h
T

0 1 2 3 4 5 6
Z-AXIS [m]

Fig. 17. Power distribution at 700 MHz.



DE LEO et al.: RIGOROUS ANALYSIS OF GTEM CELL

497

st

NORMALIZED POWER [dB]
=
L

higher order modes

fundamental mode

APPENDIX |
TE

exk(x’ Y) =hyk(x>Y)

N
=F® X kZPmn
m=0,2,4 n
sink,(y—b)

T sink,b
sink,(y +d)

sink,d ’

eyk(x’y) = —h’xk(x7 y)

N
=F® L X, 1P,
m=0,2,4 n
cosk,(y—b)
sink,b ’
cosk,(y+d)
© T sink,d

k? ‘E
hzk(x7y) = -_'FI?E
JOU ' m=0,2,4 n
cosk,(y—b)
sink,b ’
cosk,(y+d)
sink,d ’

nmw 28,

3 4 5 6

Z-AXIS [m]

Fig. 18.

n
- cos(_“f-x)
y>0

y<0

C(nm 1
( a x)k,,

a Va

y=0

(A1)

y<0
n1r 1
kZ mn‘/—COS( x)k—,,

y=0

L]
Power distribution'at 1 GHz.

™
exk(x’y)=hyk(x’y)
™ Z kZ 71-28 cos(mrx)

m=24 a
sink,(y — b)

—W, y=0
sink,(y+d)
snkd = 7S

eyk(x’ y) = _hxk(x’ y)

_ 22 )
F! mE“ kZ ‘/__sm P
cosk,(y—b) 0
sink,b =’ 7 (A2)
cosk,(y+d)
"~ sink,d y<0

k} N . 1 nm
ezk(x,y)=]—.a-f;F,?M P ¢ kZ m”f sm(——x)

m=2,4
sink,(y—b)
" Temkp 0 730
sink,(y +d)
snk,d =’ 7S

1
) §Z4Xvk§ mn vn2k

N
FI;TE={ Z ka
m

=0,2,4
-1/2

.[(m-r) kz(f3+f4)+(f1+f2)]}



498

ka mn un2 2

—-1/2

nmy2 1
[(_a—) 'I;*z(f1+f2)+(f3+f4)J}

1 1
k,b+ ) sin2k, b k,d+ 3 sin2k,d

= == “{esc (K, b) csc(k, b ) +csc(k,d)csc(k,,d
f1 sinzknb 2 Sil’lzknd [ ( nk ) ( P ) ( nk ) ( p )]
1 R 1 . +tanaz Z Z Efem(p7z)fhz(k Z)
k,,b—ism2knb k,,d—zstk,,d n m=0,2,41=0,2,4 j
f3=—-2—_ f4=.——-'2'—'_
sin“k, b sin“k,d Gi(y=b)+Gy=d), k+p
(D" G(y=b)+G(y=d), k=p,n+j
When # stands for 0,2,4,-- -, the correspondent mode has (=1 iy ) i(y ) p-n J
an electric wall at x = —a /2; otherwise it has a magnetic Gs(y=b)+Gs(y=d), k=p,n=j
wall.
sin (K, — K,,)y _ sin(K,; +K,)y
AppENDIX II Gi(y) = (Ko~ Kjp) (Kue + K;p)
When modes k& and p see the same wall, electric or sin (K, y)sin (K, y)
magnetic, Ay, = A;+ A, + A;, Dy, = Ay + A,, with
sin (K —K;,)y  sin(K,. +K,,)y
N N
K,-K. K, +K:
=X L X Tfeip D) fumlk, z)—xsc(m) () = —zr” Kin) (o + Ksp)
nom=0,2,4i=024 j sin(K,, y)(K;,y)
G(y=b)+Gyy=d), k+#p ' 6ul3) ~ K, 2K,y
Gy=b0)+G(y=d), k=p,n#j 2 2sin (K y)sin(K,,y) | (K2, - KZ)
Gs(y=b)+Gs(y=d), k=p,n=j
~ sin (K, — K,,)y sin (K, + K,,)y
2 2
+ Z Z Z fe (Knk - Knp) (Knk + Knp)
nom=0,2,4i=0,2,4
K., 2Knpy
Gy(y=b)+Gy(y = Gy(y) = 5= . -
12()’ )+Gy(y=4d), k#p_la 4 Zsm(Knky)sm(K,wy)[ (K)fp_thk)
7[Gs(y=b)+Gy(y=a)], k=p 2z .
N sin (K, — K, )y _ sin(K,,k+Knp)y
2
N N ( np nk) (Knp+Knk)
=Z E ‘ Z Zfel(p’ )fh m(k z)—xsc(n ])
n m=024i=024 j sin(2K,,y) sin (2K, y)
-G3(y=b)-G,4(y=4d), k+ 2K 2K
3(y ) 3(y ) p Gs(y)= — nk G6(y)= — nk
~Gy(y=b)-Gs(y=4d), k=p,n+j sin” (K, y) sin® (K, y)
~G(y=0)-G4(y=d), k=p,n=j )
xsc(n, j)
+Z Z Z feyz(pr 0: n=0
n m=02,4i=0 a2
I n=j#0
=Gy =>0)-Gy(y=4), k+p = nr
1 cos(n—j)m cos(n+j)m i
—7[Gs(y=0)+Gs(y=a)], k=p | as;  t ntj | nE.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 3, MARCH 1991

A3_tan02 Z Z fem(p’z)fhz(k Z) 2

n m=0,2,4i=0,2,4

‘[ =cot(k,.b)cot(k,,b) +cot (k,.d) cot (k,,d)]

+tan72 Z Z fem(pyz)fh z(k Z)

n m=0,2,4i=0,2,4




DE LEO et al.: RIGOROUS ANALYSIS OF GTEM CELL

The indices n and j in the summations stand for 0,2,4, - -
or 1,3,5,---,. corresponding to electric and magnetic walls
respectlvely
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